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On quantum matrix algebras satisfying the
Cayley–Hamilton–Newton identities
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† Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region, Russia
‡ Center of Theoretical Physics, Luminy, 13288 Marseille, France

Received 30 September 1998, in final form 21 January 1999

Abstract. The Cayley–Hamilton–Newton identities which generalize both the characteristic
identity and the Newton relations have been recently obtained for the algebras of the RTT-type. We
extend this result to a wider class of algebrasM(R̂, F̂ ) defined by a pair of compatible solutions of
the Yang–Baxter equation. This class includes the RTT algebras as well as the reflection equation
algebras.

In recent years two basic statements of matrix algebra—the Cayley–Hamilton theorem and
the Newton relations—have been generalized for quantum matrix algebras of the ‘RTT’ and
the ‘reflection equation’ (RE) types [1–6]. In [7] a new family of matrix identities called the
Cayley–Hamilton–Newton (CHN) identities were constructed. The Cayley–Hamilton theorem
and the Newton relations are particular cases and combinations of these identities. However the
proof of the CHN identities given in [7] is adapted for the RTT algebra case. The factorization
map from the RTT algebra to the RE algebra produces, in the quasitriangular case, the CHN
identities for the RE algebra. In this letter we introduce a wider class of algebras and extend
for them the proof of the CHN identities given in [7].

The key observation for such a generalization is that there are twoR-matrices lying
behind the construction of the CHN identities. The first, which we denoteR̂, is anR-matrix
of the Hecke type. It is responsible, roughly speaking, for the commutation relations of
quantum matrix entries. The second, which we refer to asF̂ , is a closedR-matrix and it
performs transition between different matrix spaces. These twoR-matrices are related by
certain compatibility conditions (see below, equations (2)).

While the role of the firstR-matrix is widely recognized, the importance of the second
one is usually not noticed. In the case of the RTT algebra theR-matrix F̂ coincides with the
permutation matrixP , whereas for the RE algebra one hasF̂ = R̂. ThereforeF̂ is in some
sense trivial for these standard examples of quantum matrix algebras. Revealing an independent
role of theR-matrix F̂ allows us to broaden the class of algebras under consideration and to
give a universal proof of the CHN identities for this whole class.

§ On leave of absence from P N Lebedev Physical Institute, Theoretical Department, Leninsky pr. 53, 117924 Moscow,
Russia.
‖ On leave of absence from Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region,
Russia.
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1. Notation

Consider an ordered pair ofR-matrices(R̂, F̂ ) whereR̂, F̂ ∈ Aut(V ⊗ V ), V is a finite-
dimensional vector space. We call this paircompatibleif, besides the Yang–Baxter equations

R̂1R̂2R̂1 = R̂2R̂1R̂2 F̂1F̂2F̂1 = F̂2F̂1F̂2 (1)

the matricesR̂ andF̂ satisfy the conditions

R̂1F̂2F̂1 = F̂2F̂1R̂2 F̂1F̂2R̂1 = R̂2F̂1F̂2. (2)

We use here the matrix conventions of [8]. In particular,R̂k and F̂k denote theR-matrices
acting inVk ⊗ Vk+1—thekth and the(k + 1)th copies of the spaceV .

In the sequel, we assume that the pair(R̂, F̂ ) is compatible. Further on, we assume that
R̂ is aneven HeckeR-matrix ofheightn andF̂ is aclosedR-matrix. Below, we briefly recall
these notions (for more details on the notation see [4,9]).

Conditions on the matrix̂R. An R-matrix R̂ satisfying the condition

R̂2 = I + (q − q−1)R̂ (3)

is called a HeckeR-matrix. HereI is the identity operator andq 6= 0 is a number.
Given a HeckeR-matrix, one constructs two sequences of projectors,A(k) andS(k) ∈

End(V ⊗k), calledq-antisymmetrizersandq-symmetrizers, correspondingly. They are defined
inductively,

A(1) := I A(k) := 1

kq
A(k−1)(qk−1− (k−1)qR̂k−1)A

(k−1) (4)

S(1) := I S(k) := 1

kq
S(k−1)(q1−k + (k−1)qR̂k−1)S

(k−1) (5)

where it is additionally supposed thatkq := (qk − q−k)/(q − q−1) 6= 0,∀k = 1, 2, . . . .
The HeckeR-matrix R̂ is called even if its sequence ofq-antisymmetrizers vanishes at

the(n + 1)th step and rankA(n) = 1. The numbern is then called the height of̂R.

Conditions on the matrix̂F . An R-matrix F̂ = F̂ abcd is called a closedR-matrix provided
it is invertible in indices(a, c) and nonsingular (i.e. invertible in indices(a, b)). The first
condition means that there exists a matrix9ab

cd satisfying9af
cg F̂

gb

f d = δad δ
b
c (summation over

repeated indices is always assumed). In the index-free form this relation can be written as
Tr(2)(91F̂2) = P13 with P13 the permutation of the spaces 1 and 3. Here and below we use the
notation Tr(i1...ik) to denote the operation of taking traces in spaces with the numbersi1 . . . ik.

DenoteD = Tr(2) 91. Using the matrixD, one introduces the notion of thequantum
tracefor an arbitrary (not necessarily with commuting entries) matrixX,

TrF̂ X := TrDX. (6)

The following properties of the matrixD will be important for us:

TrF̂ (2)F̂1 = I1 (7)

F̂1D1D2 = D1D2F̂1 (8)

TrF̂ (2)F̂
±1
1 X1F̂

∓1
1 = I1TrF̂ X. (9)
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Properties of a compatible pair ofR-matrices. Due to the compatibility conditions (2), a
matrix

R̂F̂ := F̂ R̂F̂−1 (10)

satisfies the Yang–Baxter equation and is again compatible withF̂ . This transformation was
calledtwistingofR-matrices [10] and, in the case of compatibleR̂ andF̂ , it has been considered
in [11].

SinceR̂F̂ andF̂ are compatible, one can consider the square of the twist,R̂F̂ F̂ := (R̂F̂ )F̂ .
One has the following relation

R̂F̂ F̂1 D1D2 = D1D2R̂1. (11)

We give the proof of this relation since we could not find it in the literature.
Let Y12 denote an arbitrary element of End(V ⊗ V ). Consider the following chain of

transformations:

TrF̂ (1,2)(R̂1F̂
2
1Y12) = TrF̂ (1,2,3)(R̂1F̂1F̂2F̂1Y12) = TrF̂ (1,2,3,4)(R̂1F̂2F̂1F̂3F̂2Y12)

= TrF̂ (1,2,3,4)(F̂2F̂1F̂3F̂2Y12R̂3) = TrF̂ (1,2,3,4)(Y12R̂3F̂2F̂3F̂1F̂2)

= TrF̂ (1,2,3,4)(Y12F̂2F̂3F̂1F̂2R̂1) = TrF̂ (1,2)(Y12F̂
2
1 R̂1). (12)

Here we have used the equations (7) and (1) in the first line, (2) and the cyclic property of
the trace together with (8) in the second line, and again (2), (7) and (1) in the last line of the
calculation. Substituting the definition of the quantum trace, the result of (12) can be presented
in a form

Tr(1,2)(Y12D1D2R̂1F̂
2
1 ) = Tr(1,2)(Y12F̂

2
1 R̂1D1D2)

which reduces to (11) if one takes into account the arbitrariness ofY12 and applies once again
equation (8).

2. AlgebraM(R̂, F̂ )

Consider a matrixM with arbitrary (not necessarily commutative) entries. Usually one
associates withM a series of its copies

Mk = I ⊗ · · · ⊗ I ⊗M ⊗ I ⊗ · · · ⊗ I (13)

with M on thekth place. We need the following generalization of this notion.
With a matrixM, we associate a series of matricesMk defined inductively as

M1 := M1 Mk+1 := F̂kMkF̂
−1
k . (14)

For F̂ = P the new notation coincides with the old one:Mk ≡ Mk. In general, the matrixMk

is not localized in thekth place, that is, it does not have the form (13).
Now we define the main object of this note, the algebraM(R̂, F̂ ). It is a unital associative

algebra, generated by the components of a matrixM subject to a relation

R̂1M1M2 = M1M2R̂
F̂ F̂
1 (15)

or R̂1M1F̂1M1 = M1F̂1M1R̂
F
1 , in old notation. Specializing tôF = P or F̂ = R̂ one

reproduces the RTT or RE algebras, respectively. The algebrasM(R̂, F̂ ) form a subclass of
more general algebras discussed in [12,13].



L118 Letter to the Editor

In the lemma below we collect several useful results.

Lemma.

(a) For a matrixM with arbitrary entries, the following relations hold:

F̂iMk = MkF̂i for k 6= i, i + 1 (16)

R̂iMk = MkR̂i for k 6= i, i + 1 (17)

F̂i→kMiMi+1 . . .Mk = Mi+1Mi+2 . . .Mk+1F̂i→k for i 6 k. (18)

HereF̂i→k := F̂i F̂i+1 . . . F̂k.
(b) Let Y (k) ≡ Y (k)(R̂1, . . . , R̂k−1) be any polynomial inR̂1, . . . , R̂k−1, and letY (i,k) :=

Y (k)(R̂i , . . . , R̂i+k−2). Denoteα(Y (k)) := TrF̂ (1,...,k)(Y
(k)M1 . . .Mk).

For a matrixM with arbitrary entries one has

TrF̂ (i,...,i+k−1)(Y
(i,k)Mi . . .Mi+k−1) = I1,...,i−1α(Y

(k)) (19)

whereI1,...,i−1 is the identity in the spaces1, . . . , i − 1.

(c) If, in addition,M is the matrix of generators ofM(R̂, F̂ ), one has

R̂kMkMk+1 = MkMk+1R̂
F̂ F̂
k . (20)

Proof.

(a) The relations (16) and (17) are trivial fori > k. Fori < k− 1, the relations (16) and (17)
follow immediately from our definition (14) ofMi and the conditions (1) and (2).
The relation (18) can be proved by induction. Fork = i the formula (18) is just the
definition ofMk+1. Suppose that (18) is valid for somek = j − 1 > i. Then fork = j
we have

F̂i→jMiMi+1 . . .Mj = (F̂i→j−1Mi . . .Mj−1)(F̂jMj )Mi+1 . . .Mj (F̂i→j−1Mj+1)F̂j

= Mi+1 . . .MjMj+1F̂i→j

which completes the induction. Here we applied several times the relations (16), used the
induction assumption and the definition ofF̂i→j+1 andMj+1.

(b) It suffices to check (19) for the casei = 2. The calculation proceeds as follows

TrF̂ (2,...,k+1)(Y
(2,k)M2 . . .Mk+1) = TrF̂ (2,...,k+1)(Y

(2,k)F̂1→kM1 . . .MkF̂
−1
1→k)

= TrF̂ (2,...,k+1)(F̂1→kY (k)M1 . . .MkF̂
−1
1→k)

= TrF̂ (2,...,k)(F̂1→k−1[Tr F̂ (k+1)(F̂kY
(k)M1 . . .MkF̂

−1
k )]F̂−1

1→k−1)

= TrF̂ (2,...,k)(F̂1→k−1[IkTrF̂ (k)(Y
(k)M1 . . .Mk)]F̂

−1
1→k−1) = · · · = I1α(Y (k)).

Here we used the equations (18), (2) and (9). One should not be confused with the
appearance of two TrF̂ (k) in the left-hand side of the last line of calculation. The inner of
these quantum traces acts on arguments in parentheses while the outer one respects only
the identity operatorIk among the terms enclosed by the square brackets. Therefore the
outer quantum trace TrF̂ (k) can be calculated in the next step and transformed into an inner
TrF̂ (k−1). The procedure repeats until all the outer quantum traces transform into inner
ones.
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(c) Induction ink. The relation (20) withk = 1 is just the definition ofM(R̂, F̂ ). Assume
that (20) is true for somek = i − 1> 1 and consider the casek = i,
R̂iMiMi+1 = R̂i F̂i−1Mi−1Mi+1F̂

−1
i−1 = R̂i F̂i−1F̂iMi−1Mi(F̂i−1F̂i)

−1

= F̂i−1F̂iMi−1Mi(F̂i−1F̂i)
−1R̂F̂ F̂i = MiMi+1R̂

F̂ F̂
i . (21)

Here we applied, first, the definition ofMi ,Mi+1 and the relations (16). Next, we used (2)
and the induction assumption and, then, performed the transformations of the first line of
(21) in inverse order.

�

3. Characteristic subalgebra

Let us consider three sequences of elements of the algebraM(R̂, F̂ ):

sk(M) := TrF̂ (1...k)(R̂1→k−1M1M2 . . .Mk) (22)

σk(M) := TrF̂ (1...k)(A
(k)M1M2 . . .Mk) (23)

τk(M) := TrF̂ (1...k)(S
(k)M1M2 . . .Mk) k = 1, 2, . . . . (24)

Also we puts0(M) = σ0(M) = τ0(M) = 1.
These elements are interpreted as symmetric polynomials on the spectrum of the matrixM

(see [6,7]). Namely,sk(M) are thepower sums, σk(M) are theelementary symmetric functions
andτk(M) are thecomplete symmetric functions.

It follows from the Newton and Wronski relations (see below) that, given any pair of the
sets{sk(M)}, {σk(M)} or {τk(M)}, one can express the elements of the first one of them as
polynomials in the elements of the second one. Therefore all these sets generate the same
subalgebra inM(R̂, F̂ ) which we call thecharacteristic subalgebraofM(R̂, F̂ ).

Proposition. The characteristic subalgebra ofM(R̂, F̂ ) is Abelian.

Proof. The commutativity of the characteristic subalgebra in the particular case of the RTT
algebra was observed by Maillet [14] who has checked the commutativity of power sums. We
extend Maillet’s method to treat the general case. The proof is based on the relation (19) which
is trivial for the RTT algebra case but crucial for the general algebraM(R̂, F̂ ).

Consider a pairα(Y (k)) andβ(Z(i)) of elements of the characteristic subalgebra. Using
relations (19) one can present the product ofα andβ in a form

α(Y (k))β(Z(i)) = TrF̂ (1,...,k+i)(Y
(k)Z(k+1,i)M1M2 . . .Mk+i ). (25)

Further, consider an operatorUR̂ := R̂i→i+k−1 . . . R̂2→k+1R̂1→k. By virtue of the Yang–
Baxter equation, one has

Y (k) = U−1
R̂
Y (i+1,k)UR̂ Z(k+1,i) = U−1

R̂
Z(i)UR̂. (26)

Substituting (26) into (25), one continues the transformation

α(Y (k))β(Z(i)) = TrF̂ (1,...,k+i)(U
−1
R̂
Z(i)Y (i+1,k)UR̂M1 . . .Mk+i )

= TrF̂ (1,...,k+i)(U
−1
R̂
Z(i)Y (i+1,k)M1 . . .Mi+k UR̂F̂ F̂ ) = β(Z(i))α(Y (k)).

Here the relations (17), (20), the cyclic property of the trace and the relation (11) have been
applied subsequently. �
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4. Cayley–Hamilton–Newton identities

Finally, we need a proper generalization of the notion of a matrix power for the case of
M(R̂, F̂ ). Taking off the first quantum trace in the definitions of symmetric polynomials
(22)–(24) one gets the following matrix expressions

Mk := TrF̂ (2,...,k)(R̂1→k−1M1M2 . . .Mk) (27)

M∧k := TrF̂ (2,...,k)(A
(k)M1M2 . . .Mk) (28)

M=Sk := TrF̂ (2,...,k)(S
(k)M1M2 . . .Mk). (29)

We call the matrixMk thekth power of the matrixM. Certainly, this definition coincides with
the usual one in the classical situation,R̂ = F̂ = P . More generally,Mk ≡ Mk in the case
R̂ = F̂ , i.e. for the RE algebra.

The matricesM∧k andMSk will be relevant for the formulation of the CHN identities. It
is natural to call them thek-wedgeand thek-symmetricpowers of the matrixM, respectively.

With these definitions we can formulate our main result.

Cayley–Hamilton–Newton theorem.LetM be the matrix generating the algebraM(R̂, F̂ ).
Then, the following matrix identities hold:

(−1)k−1kqM
∧k =

k−1∑
i=0

(−q)iMk−iσi(M) kqM
Sk =

k−1∑
i=0

q−iMk−iτi(M). (30)

Proof. Consider the reflectionq →−q−1, which is a symmetry transformation of a parameter
of the HeckeR-matrix R̂. It results in the substitutionskq ↔ (−1)k−1kq , A(k) ↔ S(k) and,
hence, the two equations (30) map into each other. So, it suffices to prove only one of the two
series of equations (30), say, the left one.

For the case of the RTT algebra, these identities were proved in [7]. With the notation
which we introduced in the present note, the proof of these identities given in [7] can be applied
practically without changes for the algebraM(R̂, F̂ ). The only additional remark should be
given for the very first step of the proof. It concerns the presentation of the typical term
Mk−iσi(M) from the right-hand side of the CHN identities in a form

Mk−iσi(M) = TrF̂ (2,...,k)(R̂1→k−i−1A
(k−i+1,i)M1 . . .Mk).

This equality being tautological in the RTT algebra follows by an application of (19) and (17)
in the general case.

For the rest of the proof we refer the reader to [7]. �

In conclusion we present several corollaries of the CHN theorem. Their proofs given
in [7] for the case of the RTT algebra remain valid for the general algebraM(R̂, F̂ ) as well.

Newton relations.

(−1)k−1kqσk(M) =
k−1∑
i=0

(−q)isk−i (M)σi(M) kqτk(M) =
k−1∑
i=0

q−i sk−i (M)τi(M).
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Wronski relations.

0=
k∑
i=0

(−1)iτk−i (M)σi(M).

Cayley–Hamilton theorem.

0=
n∑
i=0

(−q)iMn−iσi(M) where M0 := q−nnq Tr(2,...,n)(A
(n))D−1.

Inverse Cayley–Hamilton–Newton identities.

Mk =
k∑
i=1

(−1)i+1qk−i iqM∧iτk−i (M) =
k∑
i=1

(−1)k−iqi−kiqMSiσk−i (M).
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